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I. Introduction 

The model discussed in this study is a 

refinement a:.d extension of another proposed by 
the authors in an earlier report (7). As such, 

it continues the overall process of this research 
group, that is, refining existing models and de- 
veloping new ones for the fa2nily as a social - 
psychological system. Implicit in our work is 
the attempt to improve definition and quantifi- 
cation of the fundamental variables, and the 
processes interrelating the variables, used in 
the study of social systems. Also included in 

this effort is the definition of the variables 
as random variables. 

The variable chosen for this investigation 
was that of adult intelligence and the develop- 
ment of intelligence in children from birth to 
age 19 in the context of their family system. 
The choice was made because of the existence of 
large and well- conducted studies of the subject 
(1,8,9), including an early attempt to develop 
a mathematical model which explained the obser- 
ved phenomena. In this model, proposed by R.B. 
Zajonc and G. Markus in 1975 (8), it was specu- 

lated that the process proposed to describe the 
development of individual intellectual capability 
in a familial context would hold for many other 
psychological and psychosocial variables. These 
variables might include other aspects of problem - 
solving ability in adults, such as creativity, or 

the development and expression of truly new con- 
cepts, affiliative behavior, or the numbers and 
types of interpersonal relationships formed by 
the adult, and stability, or the "success" of 
interpersonal relationships among adults. Other 
investigators, approaching social systems from 
different perspectives, have arrived at descrip- 
tions of growth processes which are analogous to 

that proposed by Zajonc and Markus; see (3). 

The study of intelligence within a social 
system also provides the beginnings of a quanti- 

tative model for the interaction of biological 
and sociological variables. This includes the 
traditional interaction of "nature" and "nurture" 
to produce individual human capabilities and 
behaviors. Intelligence, as measured by a speci- 
fic instrument, is a variable which indicates 
the biological, or "nature" component, and family 

configuration, as measured by family size and 
birth order of the siblings, is a group of varia- 

bles representing the psychological or "nurture" 
side. 

As mentioned in the earlier report, this 

type of work had been generally called birth 
order research, and had been in somewhat of a 
state of confusion and mild disrepute (3,4) until 
the Publication of the Dutch study of Belmont 
and Marolla in 1973 (1). Since then, many inves- 
tigators have agreed that family size and birth order 
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have been definitively shown to be correlated 

with intelligence, as measured at maturity. 
Zajonc and Markus proposed a model for a develop- 
mental process which could produce the observed 

outcomes, and which also stressed the importance 
of spacing between adjacent siblings (in terms of 

age). The present investigators reported certain 
refinements in that model (7). 

It is the purpose of the present report to 
indicate how further refinements will improve the 
model. The refinements include the re- definition 

of the variates as random variables and the treat- 

ment of the interactions among the variables as 

continuous stochastic processes. The proposed 

refinements of the model will need to be tested 
against other sets of data to confirm that it is 
indeed an improvement in predictive accuracy. 
But if the improvement can be shown, the model 
would then have a number of implications for 
theories of the general function and structure of 

social systems which will be described in the 
concluding section of the present work. 

II. Formulation of the Model 

The authors have previously proposed (7) a 

deterministic differential equation for the 
Zajonc and Markus model. This is given by: 

A(t) = f a(t) - 2k2t }M(t) + 2k2ta(t) 

(2.1) 

where the dot denotes the derivative with respect 

to time, t is the age of an individual in years, 
M(t) is the intellectual level of that individual, 
and k is an arbitrary rate constant. The function 

a(t) is a known, continuously differentiable 
function of time which takes into account the 
effects of the individual's environment on his 

development. The initial condition for Equation 
2.1 is M(0) = O. The major assumption in this 
model concerning the psychological process is 
that the rate of change of the intellectual devel- 
opment (or the rate of growth of intelligence) is 

linearly proportional to the intellectual level 
itself. This formulation, based as it is on the 
studies of Belmont and Marolla (1) and the work 

of Zajonc and Markus (9) seems to offer a reason- 

able and realistic approach. 

In our earlier paper, we pointed out that the 

quantities k and a(t) should, however, more 

realistically be considered as random variables 
with certain probability distributions. Treating 

them as physical constants does not seem to 
reflect the psychological situation accurately. 
Thus, some of the uncertainty in measuring intel- 
ligence and some of the genetic and environmental 



differences, both within and between individual 
families, are expressed in the randomness of 

these variables in the model. A stochastic 
version of Equation 2.1 may be expressed by: 

M(t) + A(t)M(t) = Y(t) (2.2) 

The solution of Equation 2.2 is a stochastic 
process, M(t), which gives the intellectual 
level of an individual at age t. 

We will assume that both A(t) and Y(t) are 
random variables with finite second moments. 
According to Soong (5), the stochastic process 
M(t), 0 t < T, is a mean square solution of 
Equation-2.2-if : (1) M(t) is mean square con- 
tinuous on the interval {0, T }, that is, 
M(t + h) M(t) as h 0 for each t > 0; 

(2) M(0) = 0 with probability one; and (3) A(t) x 

M(t) + Y(t) is the mean square derivative of M(t) 
on 0, T . The method of Soong (5, chapter 8) 

may be utilized to compute the mean square solu- 
tion of Equation 2.2, which is given by: 

M(t) = ft Y(u) exp { - ft A(s)ds }du (2.3) 
u 

For a more sophisticated discussion concerning 
the stochastic structuring of such systems which 
include the nonlinear cases the reader is refer- 
red to the recent monograph of Tsokos and Padgett 
(6). 

In the Zajonc and Markus model, the variable 
a(t) is essentially flat, almost constant; 
furthermore, its range is small when compared to 
the total magnitude of the process M(t). Thus, 
it would be useful as a first approximation to 
regard it as constant. In other words, we will 
take a(t) = where a0 is a random variable. 

We have that: 

and: 

A(t) = 2k2t 

Y(t) 2k2ta 

Therefore, the mean square solution is 

M(t) = ft2k2a u exp{ - ft2k2sds }du 
0 0 u 

=a0 { 1- exp( -k2t2) } (2.5) 

which is symbolically identical to the determin- 
istic solution. Knowledge of the probability 
distributions of the random variables a0 and k 
will enable one, through the use of standard 
techniques such as derived distributions, to 
calculate the probabalistic behavior of the 
solution (2.5). 
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Another logical choice for a(t) would be an 
exponential function of the form; 

a(t) = + al exp( -clt) + a2 exp(c2t), (2.6) 

where some or all of the coefficients a0, al, a2, 
and c2 can be treated as random. The expo- 

nential sum is an appropriate form for modelling 
the behavior described by Zajonc and Markus in 
(9). They postulated that rather than remain 
constant, the family process variable a(t) would 
shift subtly over time, due to the effect of 
later births, deaths, and other changes in the 
family's structure. Note that (2.6) is based on 

the sum of a constant and two other terms, of 
much lesser magnitude, which reflect deviations 
from the constant level. Equation 2.6 represents 
a continuous fit to the step- function, discrete 
model (7). 

Substituting (2.6) in (2.1) and (2.2), we 

have; 

2 -a1c1 
exp(-c1t) + a2c2 exp(c2t) 

A(t) = 2k 
a0 + al exp(-clt) + a2 exp(c2t) 

(2.7 -i) 

and; 

Y(t) = 2k2t {a0 + al exp(-clt) + a2 exp(c2t)} 

(2.7 -ii) 

After putting (2.7) in (2.3) and integrating, the 
mean square solution is, as before, 

M(t) = a(t){ 1 - exp(-k2t2)}. 

This section closes with a comment about 
the domain 0, T of the problem and the level at 
maturity of M(t). It is easy to see that M(t) is 

dominated above by a(t). Also, a(t) itself is 

unbounded for large t in (2.6). The model is 

defined, however, only for t < T. The bound T 
represents the point at which the individual 
leaves the family setting. This does put a limit 
on the growth of M(t); it is assumed that for 

t > T, the intellectual level is essentially 
stable and the period of its rapid increase is 
over. 

III. An Example 

This example makes use of the notation and 

discretized version of the model (2.1) in (7) and 

(9). Some familiarity on the part of the reader 
with at least the former reference must be assum- 

ed. Because the Dutch data was measured at age 

19 on each subject, and was not measured longitu- 
dinally through time, it is not possible to 



estimate the coefficients for a(t) directly. 
It is possible, on the other hand, to approximate 
them in the following fashion. 

The data consists of 45 scores (transformed) 

on the Raven Progressive Matrices test, repre- 
senting the lean score for the ith child in a 

family with j siblings, i < j, i,j {1,2,...,9 }. 
These mean values are substituted into the 
discrete model, which is then solved for 45 
coefficients We form the step function; 

(t) E aij0 (3.1) 

for an ith child, where j0 is the number of 
siblings in the family when child i is t years 
old ( i < j0, i,j0 {1,2,...,9 }). This repre- 
sentation (3.1) involves the assumption that 
a'(t) changes only at the birth of each later 
sibling. The desired coefficients are then 
estimated by fitting a regression curve to the 
points where jumps, that is, by choosing 

á0, al, and c2 to minimize 

0 
-cltn â2ec2tn }2 

n =1 

where 

to age of child i at the birth of child n. 

By choosing k .1 and assuming the average 
spacing between successive births to be 2 years, 
the mean traces in Figure 1 were computed for 
each sibling in a 9 child family. This graph 
displays the typical shape of the solution (2.5). 

We have thus far only found the mean square 
solution of the problem, which is identical to 
the deterministic solution. In an actual problem 
where more data was available, this would not be 
of interest. The next step is to study the be- 
havior of the higher order moments of the 
solution, especially that of the second moment. 
It is of vital interest to discover the effects 
of these moments. If, for example, the variance 
is small relative to the mean, it is not so im- 
portant to insist upon the stochastic model. The 
deterministic version could be used. On the 

contrary, if the variance is large, then the use 
of the deterministic model could result in a 
large discrepancy between the predicted behavior 
and an experimental realization. This might even 
lead one to discard the basic model as inappro- 
priate. 

It is also possible to simulate various out- 
comes by specifying particular distributions for 

each of the coefficients, thereby investigating 
the model under a wide range of conditions. Such 
broad studies could be of great help in applying 
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this or a similar model to social system varia- 
bles other than intelligence. In summary, the 
major objective of this paper has been to dis- 
cuss, in general terms, how an existing discrete 
social or psychological model could be treated 
as a differential equation. This allows the 

use of well -developed techniques for handling 
both deterministic and stochastic equations. 
We have specifically shown how the Zajonc and 
Markus model might be naturally stochastized. 
In addition, we proposed a formulation for the 

process variable a(t) which attempts to reflect 
the behavior that they postulated for it. 
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Figure 1: Mean Intellectual Development 

For 9 Child Family (Exaggerated) 

t (In years from birth of first child) 

At = Gap between successive births 

= 2 years 

k = .1 
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